Answer on Question\#37461, Physics, Other

Question:

A fountain sends a stream of water straight up into the air to a maximum height of 4.87 m . The effective area of the pipe feeding the fountain is $5.71 \times 10-4 \mathrm{~m} 2$. Neglecting air resistance and any viscous effects, determine how many gallons per minute are being used by the fountain. (1 gal $=3.79 \times 10-3 \mathrm{~m} 3$)

Answer:

The law of conservation of energy:

$$
T+U=\text { const }
$$

where $T=\frac{m v^{2}}{2}$ - kinetic energy of water, m - mass, v - speed $U=m g h$ - potential energy of water, h is maximum height

$$
0+m g h=\frac{m v_{0}^{2}}{2}+0
$$

Therefore, initial velocity of water equals:

$$
v_{0}=\sqrt{2 g h}=9.77 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Volume of the water equals:

$$
V=A v_{0} t
$$

where A is effective area of the pipe, t-time.
Volume per 1 minute equals:

$$
V=9.77 \frac{\mathrm{~m}}{\mathrm{~s}} 5.71 * 10^{-4} \mathrm{~m}^{2} * 60 \mathrm{~s}=0.335 \mathrm{~m}^{3}
$$

In gallons:

$$
V=\frac{0.237}{3.79 * 10^{-3}}=88.3 \text { gallons }
$$

Answer: 88.3 gallons

