Answer on Question\#37445 - Physics - Mechanics

We will use kinematic equation

$$
v_{f}^{2}=v_{0}^{2}+2 a d
$$

where $v_{f}=0$ - final velocity, $v_{0}=14.6 \frac{\mathrm{~m}}{\mathrm{~s}}$ - initial velocity, a - acceleration, d - distance.
The forces acting on the truck once the brakes are applied are the component of gravity down the hill, $m g \sin \theta$, and the friction acting up the hill, $\mu m g \cos \theta$ where μ is the coefficient of kinetic friction. Therefore, choosing down the hill as the positive direction, we have

$$
m a=m g \sin \theta-\mu m g \cos \theta
$$

or

$$
a=g \sin \theta-\mu g \cos \theta
$$

So

$$
\begin{gathered}
d=-\frac{v_{0}^{2}}{2 a}=\frac{v_{0}^{2}}{\mu g \cos \theta-g \sin \theta} . \\
d=\frac{14.6^{2}}{9.81 *\left(0.915 * \cos 18^{\circ}-\sin 18^{\circ}\right)}=38.7 \mathrm{~m}
\end{gathered}
$$

Answer: 38.7 m.

