An astronomical object has its mass 4 times the mass of earth and radius half of the radius of earth. If acceleration due to gravity at earth is \boldsymbol{g}, find its value at the surface of the astronomical object.

Answer on Question\#37374 - Physics - Astronomy

We have according to the Newton's law of gravity that the
$g_{\text {planet }}=\frac{G M}{R^{2}}$
$M=4 M_{e}$
$R=\frac{1}{2} R_{e}$
$g=\frac{G M_{e}}{R_{e}{ }^{2}}=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$G=6.67 \cdot 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}$
M_{e} is mass of the Earth, R_{e} is radius of Earth.
From hence, gravitational acceleration at surface of planet is
$g_{\text {planet }}=\frac{4 G M_{e}}{R_{e}{ }^{2} / 4}=16 \mathrm{~g}=156.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Answer:
$g_{\text {planet }}=16 \mathrm{~g}=156.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

