Question: an object is thrown horizontally from a height of 20 m with velocity $10 \frac{\mathrm{~m}}{\mathrm{~s}}$. Find its velocity after $1 \mathrm{~s}\left(g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)$.

Solution: the object is thrown horizontally, so it means that velocity is directed horizontally and has only the x component v_{x}. Since there is no force that acts on the object in this direction, $v_{x}=v_{0}=$ constant. The gravitational force is acting on the body in the y direction, so it is moving with constant acceleration g. In this case $v_{y}=g t$, because initial value in this direction $v_{0 y}=0$. Thus the total value of velocity at the time t is

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{v_{0}^{2}+g^{2} t^{2}}=\sqrt{10^{2}+10^{2} \cdot 1^{2}} \cong 14 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer: $v=\sqrt{v_{0}^{2}+g^{2} t^{2}}=14 \frac{\mathrm{~m}}{\mathrm{~s}}$.

