A 370 N force is pulling an 85.1-kg refrigerator across a horizontal surface. The force acts at an angle of 22.0° above the surface. The coefficient of kinetic friction is 0.237 , and the refrigerator moves a distance of 9.44 m . Find (a) the work done by the pulling force, and (b) the work done by the kinetic frictional force.

Solution

Here we have
$m=85.1 \mathrm{~kg}$
$F=370 \mathrm{~N}$
$\alpha=22.0^{\circ}$
$\mu=0.237$
$S=9.44 m$
We choose the x-axis parallel to horizontal surface, y-axis orthogonal to horizontal surface.
In y-axis we have second Newton's equation law $P+F \sin \alpha-m g=0$, where P is reaction of surface. From hence $P=m g-F \sin \alpha=695.4 N$,

We have friction force $F_{f}=\mu P$.
The pulling force done work $A=F S=F S \cos \alpha=3239 J$ (here α is angel between pulling force and translation).

The friction forces done work $A_{F}=F_{f} S=\mu P S=1556 J$ (because friction force is antiparallel to translation).

Answer:

a) The pulling force done work $A=3239 J$.
b) The friction forces done work $A_{F}=1556 J$

