

In an experiment to prove the concept of the second condition of equilibrium, a boy balanced the meterstick on a peg board exactly at the midpoint. He then put a cylindrical metal at the 10cm mark and moved the meterstick to balance it again. If the meterstick weighs 12g, how much does the cylindrical metal weighs?

Solution:

$L = 1\text{m} - \text{length of the meterstick};$

$m_1 = 12\text{g} - \text{weight of the meterstick};$

$m_2 - \text{weight of the cylindrical metal};$

$d = 10\text{cm} - \text{distance from the end of meterstick to the cylindrical metal};$

$x - \text{displacement of the meterstick};$

Second condition of equilibrium (point A):

$$A: M_1 + M_2 = 0 \quad (1)$$

$$M_1 = m_1 g \cdot \left(\frac{L}{2} - x - d \right) \quad (2)$$

$$M_2 = -m_2 g \cdot \left(\frac{L}{2} + x \right) \quad (3)$$

(3)and(2)in(1):

$$m_1 g \cdot \left(\frac{L}{2} - x - d \right) - m_2 g \cdot \left(\frac{L}{2} + x \right) = 0$$

$$m_2 = m_1 \cdot \frac{\frac{L}{2} - x - d}{\frac{L}{2} + x} = m_1 \cdot \frac{L - 2x - 2d}{L + 2x} = 12g \cdot \frac{100\text{cm} - 2x - 20\text{cm}}{1\text{cm} + 2x}$$

$$= 12g \cdot \frac{80\text{cm} - 2x}{100\text{cm} + 2x}$$

Hence, to find m_2 we need to know the displacement of the meterstick (x)

Answer: to find m_2 we need to know the displacement of the meterstick, formula for the m_2 :

$$m_2 = 12g \cdot \frac{80\text{cm} - 2x}{100\text{cm} + 2x}.$$