A 20 cm long capillary tube is dipped in water. The water rises up to 8 cm . If the entire arrangement is put in freely falling elevators the length of water column in capillary tube will be?

From the first Newton's law of motion:

$$
F_{c a p}=W
$$

where W - weight of water column, $F_{c a p}$ - capillary force weight of water column equals:

$$
W=m g=\rho h S g
$$

where ρ-density of water, g - acceleration due to gravity, h - high of column, S - area of the tube.

In freely falling elevator $W=0$:

$W=0$

The capillary force will be the same for both cases therefore water fill whole tube, so $h=20 \mathrm{~cm}$

Answer: 20 cm

