The task:

the speed of a vehicle of mass 500 kg increases its velocity from $56 \mathrm{~km} / \mathrm{hr}$ to $72 \mathrm{~km} / \mathrm{hr}$. what is the increase in kinetic energy.

Solution:

$56 \mathrm{~km} / \mathrm{hr}=16 \mathrm{~m} / \mathrm{sec}$
$72 \mathrm{~km} / \mathrm{hr}=20 \mathrm{~m} / \mathrm{sec}$
A kinetic energy of a vehicle before increasing its velocity is

$$
E_{1}=\frac{1}{2} m v_{1}^{2}
$$

And after increasing of the velocity, kinetic energy of the vehicle is

$$
E_{2}=\frac{1}{2} m v_{2}^{2}
$$

So the increase in kinetic energy is

$$
\Delta E=E_{2}-E_{1}
$$

Or

$$
\begin{gathered}
\Delta E=\frac{m}{2}\left(v_{2}^{2}-v_{1}^{2}\right) \\
\Delta E=\frac{500 \mathrm{~kg}}{2}\left(20^{2}-16^{2}\right)=36000 \mathrm{~J}
\end{gathered}
$$

The answer: $\Delta E=36 \mathrm{~kJ}$

