A $36-\mathrm{kg}$ girl is bouncing on a trampoline. During a certain interval after leaving the surface of the trampoline, her kinetic energy decreases to 230 J from 460 J . How high does she rise during this interval? Neglect air resistance.

Solution.

$$
\begin{gathered}
m=36 \mathrm{~kg}, E_{k 1}=460 \mathrm{~J}, E_{k 2}=230 \mathrm{~J}, g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
h-?
\end{gathered}
$$

The potential energy of the girl is equal to difference of her kinetic energy taken with a "minus", because it decreases:

$$
U=-\left(E_{k 2}-E_{k 1}\right)
$$

The potential energy is:

$$
\begin{gathered}
U=m g h . \\
m g h=-\left(E_{k 2}-E_{k 1}\right) \\
m g h=E_{k 1}-E_{k 2} .
\end{gathered}
$$

The high which the girl rise during this interval is:

$$
\begin{gathered}
h=\frac{E_{k 1}-E_{k 2}}{m g} . \\
h=\frac{460 \mathrm{~J}-230 \mathrm{~J}}{36 \mathrm{~kg} \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=0.65 \mathrm{~m} .
\end{gathered}
$$

Answer: The high which the girl rises during this interval is $h=0.65 \mathrm{~m}$.

