A truck is traveling at $14.9 \mathrm{~m} / \mathrm{s}$ down a hill when the brakes on all four wheels lock. The hill makes an angle of 11° with respect to the horizontal. The coefficient of kinetic friction between the tires and the road is 0.838 . How far does the truck skid before coming to a stop?

Solution:

F_{fr} - friction force;
$\alpha=11^{\circ}-$ angle of the inclined plane;
$\mathrm{V}_{0}=14.9 \frac{\mathrm{~m}}{\mathrm{~s}}$ - initial velocity;
a - deceleration of the truck;
$\mu=0.838-$ coefficien of kinetic friction;
S - distance that truck traveled;
Newton's second law for the truck on the X-axis:
$\mathrm{x}: \mathrm{F}_{\mathrm{fr}}-\mathrm{mg}_{\mathrm{x}}=\mathrm{ma}$
Formula for the friction force:
$\mathrm{F}_{\mathrm{fr}}=\mu \mathrm{N} \Rightarrow$
$\mu \mathrm{N}-\mathrm{mg}_{\mathrm{x}}=\mathrm{ma}$
Newton's second law for the truck on the Y -axis:
$\mathrm{y}: \mathrm{N}-\mathrm{mg}_{\mathrm{y}}=0$
$\mathrm{N}=\mathrm{mg}_{\mathrm{y}}$
From te right triangle $A B C$:
$\sin \alpha=\frac{\mathrm{mg}_{\mathrm{x}}}{\mathrm{mg}} \Rightarrow \mathrm{mg}_{\mathrm{x}}=\mathrm{mg} \sin \alpha$
$\cos \alpha=\frac{\mathrm{mg}_{\mathrm{y}}}{\mathrm{mg}} \Rightarrow \mathrm{mg}_{\mathrm{y}}=\mathrm{mg} \cos \alpha$
$\mathrm{N}=\mathrm{mg}_{\mathrm{y}}=\mathrm{mg} \cos \alpha$
(2)in(1):
$\mu \mathrm{mg} \cos \alpha-\mathrm{mg} \sin \alpha=\mathrm{ma}$
$\mu \mathrm{g} \cos \alpha-\mathrm{g} \sin \alpha=\mathrm{a}$
$\mathrm{a}=\mu \mathrm{g} \cos \alpha-\mathrm{g} \sin \alpha=0.838 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot \cos 11^{\circ}-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot \sin 11^{\circ}=6.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Rate equation of the truck along X -axis:
z: $0=V$ - at
$\mathrm{V}=\mathrm{at}$
$t=\frac{V}{a}$
Equation of motion for the truck along X -axis:
$\mathrm{S}=\mathrm{Vt}-\frac{\mathrm{at}^{2}}{2}$
(4)in(5):
$\mathrm{S}=\mathrm{V} \cdot \frac{\mathrm{V}}{\mathrm{a}}-\frac{\mathrm{a}}{2} \cdot\left(\frac{\mathrm{~V}}{\mathrm{a}}\right)^{2}=\frac{\mathrm{V}^{2}}{\mathrm{a}}-\frac{\mathrm{V}^{2}}{2 \mathrm{a}}=\frac{\mathrm{V}^{2}}{2 \mathrm{a}}=\frac{\left(14.9 \frac{\mathrm{~m}}{\mathrm{~S}}\right)^{2}}{2 \cdot 6.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=18 \mathrm{~m}$

Answer: distance that truck traveled, is equal to 18 m .

