A warehouse worker uses a forklift to raise a crate of pickles on a platform to a height 2.75 m above the floor. The combined mass of the platform and the crate is 207 kg . If the power expended by the forklift is 1440 W , how long does it take to lift the crate?

Power equals:

$$
P=\frac{W}{\Delta t}
$$

where $W=\Delta E$ - work of the forklift, in the context of energy conversion equals change of body's energy, Δt-time.

$$
\Delta t=\frac{\Delta E}{P}
$$

Change of body's energy equals:

$$
\Delta E=m g h
$$

Therefore:

$$
\Delta t=\frac{m g h}{P}=\frac{207 \mathrm{~kg} * 2.75 \mathrm{~m} * 9.81 \mathrm{~m} / \mathrm{s}^{2}}{1440 \mathrm{~W}}=3.88 \mathrm{~s}
$$

Answer: 3.88 s

