Consult Multiple-Concept Example 5 for insight into solving this problem. A skier slides horizontally along the snow for a distance of 14.7 m before coming to rest. The coefficient of kinetic friction between the skier and the snow is 0.0376 . Initially, how fast was the skier going?

The law of conservation of energy:

$$
\Delta E+W=0
$$

where ΔE - change of body's energy, W - work of all forces
Work can be expressed by the following equation:

$$
W=F d \cos \theta
$$

where F is the force, d is the displacement, and the angle θ is defined as the angle between the force and the displacement vector.

Therefore, for friction force work equals:

$$
W=F_{f r} * d * \cos 180=-F_{f r} d
$$

Friction force equals:

$$
F_{f r}=\mu m g
$$

Change of body's energy equals $\frac{m v^{2}}{2}$, therefore:

$$
\begin{gathered}
\frac{m v^{2}}{2}=\mu m g d \\
v=\sqrt{2 \mu g d}=2.33 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Answer: $2.33 \frac{\mathrm{~m}}{\mathrm{~s}}$

