

A 1590-kg car is being driven up a 6.58° hill. The frictional force is directed opposite to the motion of the car and has a magnitude of 529 N. A force F is applied to the car by the road and propels the car forward. In addition to these two forces, two other forces act on the car: its weight W and the normal force F_N directed perpendicular to the road surface. The length of the road up the hill is 243 m. What should be the magnitude of F , so that the net work done by all the forces acting on the car is 187 kJ?

F_{fr} – friction force

F – force

The net force is directed along x and equals:

$$F_{net} = F - F_{fr} - W \sin 6.58^\circ$$

The work done by a constant force of magnitude F on a point that moves a displacement d in the direction of the force is the product:

$$A = Fd$$

Therefore work of net force equals:

$$A = (F - F_{fr} - W \sin 6.58^\circ)d$$

$$F = \frac{A}{d} + F_{fr} + W \sin 6.58^\circ = 3086 \text{ N}$$

Answer: 3086 N