A 1590-kg car is being driven up a 6.58° hill. The frictional force is directed opposite to the motion of the car and has a magnitude of 529 N . A force F is applied to the car by the road and propels the car forward. In addition to these two forces, two other forces act on the car: its weight W and the normal force FN directed perpendicular to the road surface. The length of the road up the hill is 243 m . What should be the magnitude of F, so that the net work done by all the forces acting on the car is 187 kJ ?

$F_{f r}$ - friction force
F - force
The net force is directed along x and equals:

$$
F_{n e t}=F-F_{f r}-W \sin 6.58^{\circ}
$$

The work done by a constant force of magnitude F on a point that moves a displacement d in the direction of the force is the product:

$$
A=F d
$$

Therefore work of net force equals:

$$
A=\left(F-F_{f r}-W \sin 6.58^{\circ}\right) d
$$

$$
F=\frac{A}{d}+F_{f r}+W \sin 6.58^{\circ}=3086 \mathrm{~N}
$$

Answer: 3086 N

