Question 37237

a)

b)
I. $S=\frac{1}{2} \cdot 20 \cdot 20+60 \cdot 20+\frac{1}{2} \cdot 40 \cdot 20=1800 \mathrm{~m}$ (These are the sums of the areas on the graph from $t=0$
to $t=120$)
II. Since the train was at rest from point C till point B, the displacement remains the same $S=1800 \mathrm{~m}$.
III. For:

$$
\begin{aligned}
& 0<t<20, \quad a=\frac{20 \frac{\mathrm{~m}}{\mathrm{~s}}}{20 \mathrm{~s}}=1 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& 80<t<120, \quad a=\frac{-20 \frac{\mathrm{~m}}{\mathrm{~s}}}{40 \mathrm{~s}}=-0.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} .
\end{aligned}
$$

