Question 37237

a)

b)

I.
$$S = \frac{1}{2} \cdot 20 \cdot 20 + 60 \cdot 20 + \frac{1}{2} \cdot 40 \cdot 20 = 1800 \, m$$
 (These are the sums of the areas on the graph from $t = 0$ to $t = 120$)

II. Since the train was at rest from point C till point B, the displacement remains the same $S=1800\,m$.

III. For:

$$0 < t < 20 , \quad a = \frac{20 \frac{m}{s}}{20 s} = 1 \frac{m}{s^2}$$

$$80 < t < 120 , \quad a = \frac{-20 \frac{m}{s}}{40 s} = -0.5 \frac{m}{s^2} .$$