Question 37229

Find the percentage decrease in weight of body when taken to a height of 32 km above the surface of earth. Radius of earth is given as 6400 km .

Weight is defined as $P=m g=G \frac{M m}{d^{2}}$, where G is the gravitational constant, M is the mass of the Earth, and d is the distance from the object to the Earth's center of the core.

When the object is at the Earth's surface,
$P_{0}=G \frac{M m}{R^{2}}$,
where R is the radius of the Earth.
When the object is taken to a height h above the Earth's surface,
$P_{h}=G \frac{M m}{(R+h)^{2}}$.
The percentage difference of the new weight with respect to the original one is
p.d. $=\frac{P_{h}-P_{0}}{P_{0}} \times 100 \%=\frac{\frac{1}{(R+h)^{2}}-\frac{1}{R^{2}}}{\frac{1}{R^{2}}} \times 100 \%=\left(\frac{R^{2}}{(R+h)^{2}}-1\right) \times 100 \%$.

Using the numerical values, $R=6400 \mathrm{~km}$, and $h=32 \mathrm{~km}$, we substitute
p.d. $=\left(\frac{6400^{2}}{6432^{2}}-1\right) \times 100 \% \approx-0.9925 \%$.

Answer: the weight is about 0.9925% less.

