you plan a trip on which you want to average $90.0 \mathrm{~km} / \mathrm{h}$. you cover the first half of your distance at an average speed of only $48 \mathrm{~km} / \mathrm{h}$. what type of vehicle must you use in order to meet your goal? Note that the velocities are based on half the distance not half the time

Solution:

$\mathrm{V}_{\mathrm{a}}=90 \frac{\mathrm{~km}}{\mathrm{~h}}$ - average speed;
$V_{1}=48 \frac{\mathrm{~km}}{\mathrm{~h}}-$ speed on the first half of the distance;
d - traveled distance;
Formula for the average speed:
$V_{a}=\frac{d}{t}$
$\mathrm{t}=\mathrm{t}_{1}+\mathrm{t}_{2}=\frac{\frac{\mathrm{d}}{2}}{\mathrm{~V}_{1}}+\frac{\frac{\mathrm{d}}{2}}{\mathrm{~V}_{2}}=\frac{\mathrm{d}}{2 \mathrm{~V}_{1}}+\frac{\mathrm{d}}{2 \mathrm{~V}_{2}}=\frac{\mathrm{d}\left(\mathrm{V}_{2}+\mathrm{V}_{1}\right)}{2 \mathrm{~V}_{1} \mathrm{~V}_{2}}$
(2)in(1):
$\mathrm{V}_{\mathrm{a}}=\frac{\mathrm{d}}{\frac{\mathrm{d}\left(\mathrm{V}_{2}+\mathrm{V}_{1}\right)}{2 \mathrm{~V}_{1} \mathrm{~V}_{2}}}=\frac{2 \mathrm{~V}_{1} \mathrm{~V}_{2}}{\mathrm{~V}_{2}+\mathrm{V}_{1}}$
$2 V_{1} V_{2}=V_{2} V_{a}+V_{1} V_{a}$
$\mathrm{V}_{2}\left(2 \mathrm{~V}_{1}-\mathrm{V}_{\mathrm{a}}\right)=\mathrm{V}_{1} \mathrm{~V}_{\mathrm{a}}$
$V_{2}=\frac{V_{1} V_{a}}{2 V_{1}-V_{a}}=\frac{48 \frac{\mathrm{~km}}{\mathrm{~h}} \cdot 90 \frac{\mathrm{~km}}{\mathrm{~h}}}{2 \cdot 48 \frac{\mathrm{~km}}{\mathrm{~h}}-90 \frac{\mathrm{~km}}{\mathrm{~h}}}=720 \frac{\mathrm{~km}}{\mathrm{~h}}$
Answer: we must use the vehicle with average speed $720 \frac{\mathrm{~km}}{\mathrm{~h}}$ (airplane).

