Question \#37220
A $0.75-\mathrm{kg}$ metal sphere oscillates at the end of a vertical spring. As the spring stretches from 0.12 m to 0.23 m (relative to its unstrained length), the speed of the sphere decreases from 6.7 to $3.2 \mathrm{~m} / \mathrm{s}$. What is the spring constant of the spring?

Solution

Let
$m=0.75 \mathrm{~kg}$
$S_{1}=0.12 \mathrm{~m}$
$S_{2}=0.23 \mathrm{~m}$
$v_{1}=6.7 \mathrm{~m} / \mathrm{s}$
$v_{2}=3.2 \mathrm{~m} / \mathrm{s}$
$k=$?

According to the law of conservation energy
The change of the kinetic energy of sphere is equal to the change of potential energy of the spring
$\Delta E_{k}=\Delta E_{p}$
$\Delta E_{k}=\frac{1}{2} m\left(v_{1}-v_{2}\right)^{2}$
$\Delta E_{p}=\frac{1}{2} k\left(S_{2}-S_{1}\right)^{2}$
Following this
$\boldsymbol{k}=\boldsymbol{m} \frac{\left(v_{1}-v_{2}\right)^{2}}{\left(S_{2}-S_{1}\right)^{2}}$
$k=0.75 \frac{(6.7-3.2)^{2}}{(0.23-0.12)^{2}}=760 \mathrm{~N} / \mathrm{m}$
Answer 760 N/m.

