

A penny dropped from the top of a rollercoaster. The height of the ride is 110m. (neglect air resistance)

- A. Find the speed of the penny when it hits the ground.
- B. Find the time it takes for the penny to fall to the ground.

A.

The law of conservation of energy:

$$T + U = \text{const}$$

$T = \frac{mv^2}{2}$ - kinetic energy, m - mass of the body, v - speed

$U = mgh$ - potential energy, g - gravitational acceleration, h - high

Therefore:

$$mgh + 0 = 0 + \frac{mv^2}{2}$$

$$v = \sqrt{2gh} = \sqrt{2 * 9.8 \frac{m}{s^2} * 110 m} = 46 \frac{m}{s}$$

Answer: $46 \frac{m}{s}$

B.

Speed for uniformly accelerated motion with initial speed 0 equals:

$$v = g * t$$

Therefore, time of motion equals:

$$t = \frac{v}{g} = \frac{46 \frac{m}{s}}{9.8 \frac{m}{s^2}} = 4.7 s$$

Answer: 4.7 s