A liter of whole milk has a mass of 1032 g . It contains 4% butterfat by volume. The specific gravity of butterfat is $0.865 \mathrm{~g} / \mathrm{cc}$. What is the density in g / cc of the fat free "skimmed-milk"?

$$
1 \text { liter }=1000 \mathrm{~cm}^{3}
$$

Whole milk contains 4\% butterfat by volume, therefore volume of butterfat equals:

$$
V_{b}=0.04 * 1000 \mathrm{~cm}^{3}=40 \mathrm{~cm}^{3}
$$

And its mass:

$$
m_{b}=V_{b} * \rho_{b}=40 \mathrm{~cm}^{3} * 0.865 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}=34.6 \mathrm{~g}
$$

Therefore, mass of pure milk in whole milk equals:

$$
m_{m}=1032 g-34.6 g=997.4 g
$$

And its volume:

$$
V_{m}=1000 \mathrm{~cm}^{3}-4 \mathrm{~cm}^{3}=960 \mathrm{~cm}^{3}
$$

Therefore, density of the fat free milk equals:

$$
\rho=\frac{m_{m}}{V_{m}}=\frac{997.4 \mathrm{~g}}{960 \mathrm{~cm}^{3}}=1.039 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
$$

Answer: $1.039 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$

