A space vehicle travelling at a velocity of $1200 \mathrm{~m} / \mathrm{s}$ separates by a controlled explosion into two sections of mass 855 kg and 240 kg . The two parts carry on in the same direction with the heavier rear section moving $120 \mathrm{~m} / \mathrm{s}$ slower than the lighter front section. Determine the velocity of each section after separation.

Solution:

$\mathrm{V}=1200 \frac{\mathrm{~m}}{\mathrm{~s}}$ - initial speed of the space vehicle;
$m_{1}=855 \mathrm{~kg}-$ mass of the first section;
$m_{2}=240 \mathrm{~kg}-$ mass of the second section;
V_{1} - speed of the heavier section;
V_{2} - speed of the lighter section;
$\Delta V=120 \frac{\mathrm{~m}}{\mathrm{~s}}$ - speed difference between the sections;
The law of conservation of momentum along the X -axis:
$x:\left(m_{1}+m_{2}\right) V=m_{1} V_{1}+m_{2}\left(V_{1}+\Delta V\right)$
$m_{1} V_{1}+m_{2} V_{1}=\left(m_{1}+m_{2}\right) V-m_{2} \Delta V$
$V_{1}=\frac{\left(m_{1}+m_{2}\right) V-m_{2} \Delta V}{m_{1}+m_{2}}=V-\frac{m_{2} \Delta V}{m_{1}+m_{2}}=$
$=1200 \frac{\mathrm{~m}}{\mathrm{~s}}-\frac{240 \mathrm{~kg} \cdot 120 \frac{\mathrm{~m}}{\mathrm{~s}}}{855 \mathrm{~kg}+240 \mathrm{~kg}}=1174 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{V}_{2}=\mathrm{V}_{1}+\Delta \mathrm{V}=1174 \frac{\mathrm{~m}}{\mathrm{~s}}+120 \frac{\mathrm{~m}}{\mathrm{~s}}=1294 \frac{\mathrm{~m}}{\mathrm{~s}}$
Answer: speed of the heavier (855 kg) section: $1174 \frac{\mathrm{~m}}{\mathrm{~s}}$
Speed of the lighter (240 kg) section: $1294 \frac{\mathrm{~m}}{\mathrm{~s}}$.

