An air bubble of 1 cm radius is rising at a steady rate of $2 \frac{\mathrm{~mm}}{\mathrm{~s}}$ through a liquid of density $1.5 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$ neglect density of air, if g is $1000 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}}$, then the coefficient of viscosity of the liquid is ?

Force of viscosity equals (Stokes' law):

$$
F_{v}=6 \pi \mu v r
$$

where v-speed of the bubble, μ-coefficient of viscosity
Buoyant force that is exerted on bubble equals:

$$
F_{b}=\rho g V=\rho g \frac{4}{3} \pi r^{3}
$$

Newton's first law of motion:

$$
\begin{gathered}
F_{b}=F_{v} \\
6 \pi \mu v r=\rho g \frac{4}{3} \pi r^{3} \\
\mu=\frac{\rho g \frac{4}{3} \pi r^{3}}{6 \pi v r}=\frac{2 \rho g r^{2}}{9 v} \cong 167 \frac{\mathrm{~kg}}{\mathrm{~m} * \mathrm{~s}}
\end{gathered}
$$

Answer: $167 \frac{\mathrm{~kg}}{\mathrm{~m} * \mathrm{~s}}$

