At what speed, the velocity head of water is equal to pressure head of 40 cm of mercury

Solution:

$\mathrm{h}=40 \mathrm{~cm}=0.4 \mathrm{~m}-$ head mercury column;
Velocity head $=40 \mathrm{~cm}$ of Hg column $\mathrm{h}_{\mathrm{w}}=\mathrm{h} \cdot 13.6 \mathrm{~cm}$ of water column.

$$
\begin{gathered}
\mathrm{h}_{\mathrm{w}}=\frac{\mathrm{v}^{2}}{2 \mathrm{~g}} \\
\mathrm{v}=\sqrt{2 \mathrm{gh}_{\mathrm{w}}}=\sqrt{2 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}_{\mathrm{w}}} \cdot 0.4 \mathrm{~m} \cdot 13.6}=10.3 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Answer: velocity head of water is $10.3 \frac{\mathrm{~m}}{\mathrm{~s}}$

