Air streams horizontally past an air plane .The speed over the top surface is 60 m / s and that under the bottom surface is $45 \mathrm{~m} / \mathrm{s}$.the density of air is $1.293 \mathrm{~kg} / \mathrm{m}$ cube. Then he difference in pressure is?

Bernoulli's principle can be expressed as a mathematical equation:

$$
\frac{v^{2}}{2}+g h+\frac{p}{\rho}=\mathrm{const}
$$

where v is the air streams speed, g is the acceleration due to gravity, h is the height, p is the pressure, and ρ is the density of the air.

In our case:

$$
\frac{v_{t}^{2}}{2}+\frac{p_{t}}{\rho}=\frac{v_{b}^{2}}{2}+\frac{p_{b}}{\rho}
$$

v_{t}, v_{b} - speeds over the top and that under the bottom surfaces, $p_{t}, p_{b}-$ pressures over the top and that under the bottom surfaces.

$$
p_{b}-p_{t}=\frac{\rho}{2}\left(v_{t}^{2}-v_{b}^{2}\right)=\frac{1.293 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}{2}\left(60^{2}-45^{2}\right) \frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}}=1018 \mathrm{~Pa}
$$

Answer: 1018 Pa

