If the excess pressure inside a soap bubble is balanced by an oil column of 2 mm , then the surface tension of soap will be? ($r=1 \mathrm{~cm}$, density of oil $=0.8 \mathrm{~g} / \mathrm{cm}^{3}$)

The excess pressure inside a soap bubble equals:

$$
p=\frac{2 \gamma}{r}
$$

where γ - surface tension of soap, r - radius of the bubble
The pressure of an oil column equals:

$$
p=\rho g h
$$

where ρ - density of oil, g - acceleration due to gravity, h - high of column Therefore:

$$
\rho g h=\frac{2 \gamma}{r}
$$

or:

$$
\gamma=\frac{1}{2} \rho g h r=0.078 \frac{\mathrm{~N}}{\mathrm{~m}}
$$

Answer: $0.078 \frac{\mathrm{~N}}{\mathrm{~m}}$

