The excess pressure inside a spherical drop of water is four times that of another drop. Then their respective mass ratio is?

The excess pressure inside a spherical drop of water equals:

$$
p=\frac{2 \gamma}{r}
$$

where γ-surface tension for water, r - radius of the drop
So, if we have 2 drops with excess pressures $4 p_{1}=p_{2}$ then:

$$
4 \frac{2 \gamma}{r_{1}}=\frac{2 \gamma}{r_{2}}
$$

or:

$$
\frac{r_{1}}{r_{2}}=4
$$

But on other hand, mass of spherical drop of water equals:

$$
m=\frac{4}{3} \pi r^{3} \rho
$$

where ρ-density of water, r - radius of the drop
Therefore,

$$
\frac{m_{1}}{m_{2}}=\frac{r_{1}^{3}}{r_{2}^{3}}=\left(\frac{r_{1}}{r_{2}}\right)^{3}=4^{3}=64
$$

Answer: 64

