A vertical U tube of uniform cross-section contains water in both the arms.$A 10 \mathrm{~cm}$ glycerin column (R.D=1.2) is added to one of the limbs .the level difference b / w the two free surface in the two limbs will be ?

Solution:

$\mathrm{h}_{\mathrm{h}}=10 \mathrm{~cm}=0.1 \mathrm{~m}-$ hight of the glycerin in first arm;
h_{w} - hight of the water in second arm;
$\rho_{\mathrm{w}}=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}-$ density of the water;
$\rho_{\mathrm{h}}=1200 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ - density of the glycerin;
x - level difference b / w the two free surface in the two limbs;
Pressures at level AA' of the water and glycerin are equal:
$A A^{\prime}: \mathrm{p}_{\mathrm{w}}=\mathrm{p}_{\mathrm{h}}$
$\rho_{\mathrm{h}} \mathrm{gh}_{\mathrm{h}}=\rho_{\mathrm{w}} \mathrm{gh}_{\mathrm{w}}$
$\mathrm{h}_{\mathrm{w}}=\mathrm{h}_{\mathrm{h}}+\mathrm{x}$
(2)in(1):
$\rho_{\mathrm{h}} \mathrm{gh}_{\mathrm{h}}=\rho_{\mathrm{w}} \mathrm{g}\left(\mathrm{h}_{\mathrm{h}}+\mathrm{x}\right)$
$\rho_{\mathrm{h}} \mathrm{h}_{\mathrm{h}}=\rho_{\mathrm{w}} \mathrm{h}_{\mathrm{h}}+\rho_{\mathrm{w}} \mathrm{X}$
$x=\frac{\rho_{\mathrm{h}} \mathrm{h}_{\mathrm{h}}-\rho_{\mathrm{w}} \mathrm{h}_{\mathrm{h}}}{\rho_{\mathrm{w}}}=\frac{0.1 \mathrm{~m}\left(1200 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}-1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)}{1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}=0.02 \mathrm{~m}=2 \mathrm{~cm}$
Answer: the level difference b/w the two free surface in the two limbs will be 2 cm .

