A piece of gold weigh 10 g in air and 9 g in water .what is volume of cavity (19.3 $\mathrm{g} / \mathrm{cm}^{3}$)

For piece of gold in air:

$$
m=\rho_{g} V_{g}=10 g
$$

where ρ_{g} - density of gold, V_{g} - volume of gold
For piece of gold in air (assuming Archimedes' principle that the upward buoyant force is equal to the weight of the fluid that the body displaces):

$$
m-\rho_{w}\left(V_{g}+V_{c}\right)=9 g
$$

where ρ_{w} - density of water, V_{c} - volume of cavity.
Substitute from first $g V_{g}=\frac{m g}{\rho_{g}}$ to second:

$$
m-\rho_{w} \frac{m}{\rho_{g}}-\rho_{w} V_{c}=9 g
$$

Or:

$$
\begin{gathered}
10 g\left(1-\frac{\rho_{w}}{\rho_{g}}\right)-9 g=\rho_{w} V_{c} \\
V_{c}=\frac{10 g\left(1-\frac{\rho_{w}}{\rho_{g}}\right)-9 g}{\rho_{w}}=\frac{10 g\left(1-\frac{1}{19.3}\right)-9 g}{1 \frac{g}{c m^{3}}}=0.48 \mathrm{~cm}^{3}
\end{gathered}
$$

Answer: $0.48 \mathrm{~cm}^{3}$

