Question 37142

Reynolds number is $\text{Re}=\frac{vl}{v}$, where v is the mean velocity, l is the typical length scale in system and v is the kinematic viscosity. The kinematic viscosity is $v=\frac{\eta}{\rho}$, where η is the dynamical viscosity and ρ is the density of the fluid. Let us first convert given viscosity into $Pa \cdot s$ (in SI). $1P = 10 \cdot 1PI$ And $1Pa \cdot s = 10P$, hence $1Pa \cdot s = 100PI$ so $\eta = 10^{-5}Pa \cdot s$. Kinematic viscosity is then $v = 10^{-8}\frac{m^2}{s}$.

Also knowing $l=2 cm=2 \cdot 10^{-2} m$ and $v=5 \frac{cm}{s}=5 \cdot 10^{-2} \frac{m}{s}$, obtain Re=100. Critical Reynolds value is 1000 hence the flow is laminar (calculated Reynolds value is lower than critical).