Two metal balls of radius R and $2 R$ falling through a fluid have same velocity at some point. The viscous drag acting on them at that instant are in the ratio?

Drag force can be calculated from:

$$
F_{d}=\frac{1}{2} \rho v^{2} C_{D} A
$$

where ρ is the density of the fluid, v is the speed of the object relative to the fluid, A is the cross-sectional area, and C_{D} - some coefficient the same for both balls.

Assuming A is proportional to $r^{2}\left(A \propto r^{2}\right)$ we can write:

$$
F_{d} \propto r^{2}
$$

Therefore, the viscous drag acting on balls is in the ratio:

$$
\frac{F_{d}(R)}{F_{d}(2 R)}=\frac{R^{2}}{(2 R)^{2}}=\frac{1}{4}
$$

Answer: $\frac{1}{4}$

