A fluid of density 2 into 10 raise to power cube kg / m cube is flowing in horizontal pipe .the speed of water at point A is $4 \mathrm{~cm} / \mathrm{s}$, what is its speed at point B (Height=2.5mm)

Bernoulli's principle can be expressed as a mathematical equation:

$$
\frac{v^{2}}{2}+g h+\frac{p}{\rho}=\text { const }
$$

where v is the fluid flow speed, g is the acceleration due to gravity, h is the height, p is the pressure, and ρ is the density of the fluid. In our case:

$$
\begin{gathered}
\frac{v_{A}^{2}}{2}+g h=\frac{v_{B}^{2}}{2}+0 \\
v_{B}=\sqrt{v_{A}^{2}+g h}=22.5 \frac{\mathrm{~cm}}{\mathrm{~s}}
\end{gathered}
$$

Answer: $22.5 \frac{\mathrm{~cm}}{\mathrm{~s}}$

