The pressure at a point in water is $10 \mathrm{~N} / \mathrm{m}$ squre .the depth below this point where the pressure becomes double is (given density of water $=10$ cube kg / m cube, $\mathrm{g}=10$ m / s square ?

Solution:

$p_{1}=10 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}-$ pressure at the first point
$\mathrm{p}_{2}=2 \mathrm{p}_{1}-$ pressure at the second point;
Formula for the pressure:
$p_{1}=\rho \mathrm{gh}_{1}$
$\mathrm{p}_{2}=\rho \mathrm{gh}_{2}=\rho g\left(\mathrm{~h}_{1}+\Delta \mathrm{h}\right)=\rho \mathrm{gh}_{1}+\rho g \Delta \mathrm{~h}$
$\mathrm{p}_{2}=2 \mathrm{p}_{1} \Rightarrow$
$p_{1}+\rho g \Delta h=2 p_{1}$
$p_{1}=\rho g \Delta h$
$\Delta \mathrm{h}=\frac{\mathrm{p}_{1}}{\rho \mathrm{~g}}=\frac{10 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}}{1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 10 \frac{\mathrm{~N}}{\mathrm{~kg}}}=1 \mathrm{~mm}$
Answer: the depth below this point where the pressure becomes double is 1 mm .

