A 1600 kg car moves along a horizontal road at speed $\mathrm{vO}=17.3 \mathrm{~m} / \mathrm{s}$. The road is wet, so the static friction coefficient between the tires and the road is only $\mu \mathrm{s}=0.311$ and the kinetic friction coefficient is even lower, $\mu \mathrm{k}=0.2177$.
The acceleration of gravity is $9.8 \mathrm{~m} / \mathrm{s} 2$. Assume: No aerodynamic forces; $\mathrm{g}=$ $9.8 \mathrm{~m} / \mathrm{s} 2$, forward is the positive direction.
What is the highest possible deceleration of the car under such conditions?
Answer in units of $\mathrm{m} / \mathrm{s} 2$

Solution:

$\mathrm{m}=1600 \mathrm{~kg}-$ mass of the car;
$\mathrm{V}_{0}=17.7 \frac{\mathrm{~m}}{\mathrm{~s}}$ - speed of the car;
$\mathrm{g}=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}-$ acceleration due to gravity;
$\mathrm{a}_{\text {max }}$ - highest possible deceleration of the car
$\mu_{s}=0.311$ - static friction coefficient between the tires and the road;
$\mu_{\mathrm{k}}=0.2177$ - kinetic friction coefficient ;
Second Newton's law for the car (N - reaction force):
$\mathrm{y}: \mathrm{N}=\mathrm{mg}$
$x: \mathrm{F}_{\mathrm{fr}}=m \mathrm{a}_{\text {max }}$
Formula for the friction force:
$\mathrm{F}_{\mathrm{fr}}=\mathrm{N} \mu_{\mathrm{k}}=\mathrm{mg} \mu_{\mathrm{k}} \quad$ (2) (we use μ_{k} because car moves)
(2) in(1):
$m g \mu_{\mathrm{k}}=\mathrm{ma}_{\text {max }}$
$\mathrm{a}_{\text {max }}=\mathrm{g} \mu_{\mathrm{k}}=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 0.2177=2.13 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Answer: the highest possible deceleration of the car under such conditions is $2.13 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

