A $214-\mathrm{kg}$ crate is pushed horizontally with a force of 719 N . If the coefficient of friction is 0.20 , calculate the acceleration of the crate.

$F_{f r}$ - friction force
F - pulling force
Newton's second law of motion:

$$
\begin{gathered}
x: F-F_{f r}=m a \\
y: N=m g
\end{gathered}
$$

Friction force equals $F_{f r}=\mu N=\mu m g, \mu$-coefficient of friction.
Therefore:

$$
a=\frac{F-\mu m g}{m}=\frac{719 \mathrm{~N}-214 * 9.8 * 0.2 \mathrm{~N}}{214 \mathrm{~kg}}=1.4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Answer: $1.4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

