While chopping down his father's cherry tree, George discovered that if he swung the axe with a speed of $27 \mathrm{~m} / \mathrm{s}$, it would embed itself 1.9 cm into the tree before coming to a stop.
a. If the axe head had a mass of 2.5 kg , how much force was the tree exerting on the axe head upon impact?
b. How much force did the axe exert back on the tree?

Solution:

$\mathrm{V}_{0}=27 \frac{\mathrm{~m}}{\mathrm{~s}}-$ initial velocity of the axe;
$\mathrm{d}=1.9 \mathrm{~cm}=0.019 \mathrm{~m}-$ distance that axe came before stop
$\mathrm{m}=2.5 \mathrm{~kg}$ - mass of the axe;
The law of conservation of the total mechanical energy:
$\mathrm{W}_{\text {before hitting }}=\mathrm{W}_{\text {after hitting }}$
$\mathrm{W}_{\text {before hitting }}=\mathrm{W}_{\mathrm{k}}=\frac{\mathrm{mV}^{2}}{2}$
$\mathrm{W}_{\text {after hitting }}=\mathrm{W}_{\text {work }}=\mathrm{Fd}$
(3) and(2)in(1):
$\frac{m V^{2}}{2}=\mathrm{Fd}$
$\mathrm{F}=\frac{\mathrm{mV}^{2}}{2 \mathrm{~d}}=\frac{2.5 \mathrm{~kg} \cdot\left(27 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \cdot 0.019 \mathrm{~m}}=48000 \mathrm{~N}=48 \mathrm{kN}$
Newton's third law: When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction to that of the first body:

$$
\mathrm{F}_{\mathrm{axe} \rightarrow \text { tree }}=\mathrm{F}_{\text {tree } \rightarrow \mathrm{axe}}=48 \mathrm{kN}
$$

Answer: a) 48 kN b) 48 kN .

