

A current flows through a resistance $R=10$ Ohm what is the expression for instantaneous voltage across the resistance when a) $i=5\sin 314t$ b) $i=10\sin(1570-45')$

Solution.

$$R = 10 \text{ Ohm};$$

a) $i = 5\sin 314t;$

b) $i = 10\sin(1570 - 45');$

a) $u - ?$

b) $u - ?$

A general expression for instantaneous current:

$$i = I_{max} \sin(\omega t + \varphi_0).$$

A general expression for instantaneous voltage across the resistance:

$$u = U_{max} \sin(\omega t + \varphi_0).$$

I_{max} - the peak current;

U_{max} - the peak voltage;

φ_0 – the phase shift.

By Ohm's law:

$$I_{max} = \frac{U_{max}}{R};$$

$$U_{max} = I_{max}R.$$

$$u = I_{max}R \sin(\omega t + \varphi_0).$$

a) $i = 5\sin 314t;$

$$I_{max} = 5A.$$

The expression for instantaneous voltage across the resistance:

$$u = 5 \cdot 10 \sin 314t = 50 \sin 314t.$$

b) $i = 10\sin(1570 - 45');$

$$I_{max} = 10A.$$

The expression for instantaneous voltage across the resistance:

$$u = 10 \cdot 10 \sin(1570 - 45') = 100 \sin(1570 - 45').$$

Answer: a) The expression for instantaneous voltage across the resistance is $u = 50\sin 314t$.
b) The expression for instantaneous voltage across the resistance is $u = 100\sin(1570 - 45')$.