a 60 ohm resistor in parallel with a resistor of unknown value when 120 V is applied to the circuit the current is 3A.Calculate a) unknown resistance b) total equivalent resistance

Solution:

$\mathrm{R}_{1}=60$ ohm -known resistance;
R_{2} - unknown resistance;
$\mathrm{R}_{\text {total }}$ - total equivalent resistance of the circuit;
$I_{\text {total }}=3 \mathrm{~A}-$ current flowing through the circuit;
$\mathrm{U}_{\text {total }}=120 \mathrm{~V}-$ voltage of the circuit;
Ohm's law for the circuit:

$$
\mathrm{I}_{\text {total }}=\frac{\mathrm{U}_{\text {total }}}{\mathrm{R}_{\text {total }}} \Rightarrow \mathrm{R}_{\text {total }}=\frac{\mathrm{U}_{\text {total }}}{\mathrm{I}_{\text {total }}}=\frac{120 \mathrm{~V}}{3 \mathrm{~A}}=400 \mathrm{hm}
$$

Formula for the total resistance of the parallel circuit:

$$
\begin{gathered}
\frac{1}{\mathrm{R}_{\text {total }}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}} \\
\frac{1}{\mathrm{R}_{2}}=\frac{\mathrm{R}_{1}-\mathrm{R}_{\text {total }}}{\mathrm{R}_{\text {total }} \cdot \mathrm{R}_{1}} \\
\mathrm{R}_{2}=\frac{600 \mathrm{hm} \cdot 400 \mathrm{hm}}{600 \mathrm{hm}-400 \mathrm{hm}}=1200 \mathrm{hm}
\end{gathered}
$$

Answer: a) $\mathrm{R}_{2}=120$ Ohm;
b) $R_{\text {total }}=400 \mathrm{hm}$.

