How to calculate acceleration from velocity-displacement graph? It's from kinematics.

Acceleration is the rate at which the velocity of a body changes with time:

$$
a=\frac{d v}{d t}
$$

We can multiply it by $1=\frac{d x}{d x}$:

$$
a=\frac{d v}{d t} \frac{d x}{d x}=\frac{d v}{d x} * \frac{d x}{d t}
$$

But by definition velocity equals:

$$
v=\frac{d x}{d t}
$$

Therefore:

$$
a=\frac{d v}{d x} * v
$$

Therefore, acceleration equals slope on velocity-displacement graph multiplied by velocity.

For example, we have velocity-displacement graph and want to find acceleration in point $\left(s_{0}, v\left(s_{0}\right)\right)$:

Slope in this point equals

$$
\frac{\Delta v}{\Delta s}=\left.\frac{d v(s)}{d s}\right|_{s=s_{0}}
$$

And velocity equals $v\left(s_{0}\right)$. Therefore, acceleration in this point:

$$
a\left(s_{0}\right)=\frac{\Delta v}{\Delta s} v_{0}=\left.\frac{d v(s)}{d s}\right|_{s=s_{0}} v\left(s_{0}\right)=k * v\left(s_{0}\right)
$$

where $k=\left.\frac{d v(s)}{d s}\right|_{s=s_{0}}-$ slope in point $\left(s_{0}, v\left(s_{0}\right)\right)$

Taking the slope of a v - + graph

