What is the tangential acceleration of a bug on the rim of a 10.0 in . diameter disk if the disk moves from rest to an angular speed of 75 revolutions per minute in 4.0 s ?

Solution:

$\mathrm{d}=10.0 \mathrm{in}=0.254 \mathrm{~m}$-diametr of the disk;
$v=75$ revolutions per minute $=\frac{75}{60} \cdot 2 \pi=7.85 \frac{\mathrm{rad}}{\mathrm{s}}$-angular speed of the disk;
$t=4 \mathrm{~s}-$ time that disk need to move from rest to an angular speed.

Angular acceleration of the disk is:

$$
\mathrm{a}_{\mathrm{ang}}=\frac{v}{\mathrm{t}}=\frac{7.85 \frac{\mathrm{rad}}{\mathrm{~s}}}{4 \mathrm{~s}}=1.96 \frac{\mathrm{rad}}{\mathrm{~s}^{2}}
$$

Tangential acceleration of the disk:

$$
\mathrm{a}_{\mathrm{ang}}=\frac{\mathrm{a}_{\mathrm{tan}}}{r} \Rightarrow \mathrm{a}_{\mathrm{tan}}=\mathrm{a}_{\mathrm{ang}} \cdot \mathrm{r}=\mathrm{a}_{\mathrm{ang}} \cdot \frac{\mathrm{~d}}{2}=1.96 \frac{\mathrm{rad}}{\mathrm{~s}^{2}} \cdot \frac{0.254 \mathrm{~m}}{2}=0.25 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Answer: Tangential acceleration of the disk is $0.25 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

