A liquid of density $1.17 \times 103 \mathrm{~kg} / \mathrm{m} 3$ flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is $9.47 \mathrm{~m} / \mathrm{s}$ and the pipe diameter is $1.11 \times$ 101 cm . At location 2 the pipe diameter is $1.77 \times 101 \mathrm{~cm}$. At location 1 the pipe is 9.45 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.

## Solution

From the equation of continuity:

$$
A_{1} v_{1}=A_{2} v_{2}
$$

where $A_{1}=\frac{\pi d_{1}^{2}}{4}, A_{2}=\frac{\pi d_{2}^{2}}{4}-$ areas of pipes.
So

$$
v_{2}=\frac{A_{1}}{A_{2}} v_{1}=\frac{\frac{\pi d_{1}^{2}}{4}}{\frac{\pi d_{2}^{2}}{4}} v_{1}=\frac{d_{1}^{2}}{d_{2}^{2}} v_{1}
$$

Use Bernoulli's equation

$$
P_{2}+\rho g z_{2}+\frac{\rho v_{2}^{2}}{2}=P_{1}+\rho g z_{1}+\frac{\rho v_{1}^{2}}{2}
$$

The difference between the fluid pressure at location 2 and the fluid pressure at location 1 :

$$
\begin{gathered}
P_{2}-P_{1}=\rho g\left(z_{1}-z_{2}\right)+\frac{\rho\left(v_{1}^{2}-v_{2}^{2}\right)}{2}=\rho g\left(z_{1}-z_{2}\right)+\frac{1}{2} \rho v_{1}^{2}\left(1-\left(\frac{d_{1}}{d_{2}}\right)^{4}\right) \\
P_{2}-P_{1}=1.17 * 10^{3} * 9.81 * 9.45+\frac{1}{2} * 1.17 * 10^{3} * 9.47^{2}\left(1-\left(\frac{1.11}{1.77}\right)^{4}\right) \\
P_{2}-P_{1}=1.53 * 10^{5} \mathrm{~Pa}=153 \mathrm{kPa} .
\end{gathered}
$$

Answer: 153 kPa.

