If the radius of a star is R and it acts as a black body, what would be the temperature of the star, in which the rate of energy production is q (c stands for Stefan "s constant)

Solution

Total surface area of the star

$$
A=4 \pi R^{2} .
$$

By Stefan - Boltzmann black body kept at temperature T radiates heat per unit surface area per second given by

$$
E=c T^{4},
$$

c - Stefan-Boltzmann constant.
Now

$$
E=\frac{q}{A}=\frac{q}{4 \pi R^{2}} \rightarrow \frac{q}{4 \pi R^{2}}=c T^{4} .
$$

The temperature of the star

$$
T=\sqrt[4]{\frac{q}{4 \pi c R^{2}}}=\frac{1}{\sqrt{2 R}} \sqrt[4]{\frac{q}{\pi c}} .
$$

Answer: $\frac{1}{\sqrt{2 R}} \sqrt[4]{\frac{q}{\pi c}}$.

