Answer on Question \#37027, Thermodynamics

In a calorimeter of water equivalent 20 g , water of mass 1.1 kg at 288 k temperature .if steam at temperature 373 k is passed through it and temperature of water increase by 6.5 degree c then the mass of steam condensed is

Solution

Let x be the mass of steam condensed. The heat obtained calorimeter with water is equal the heat from condensing $x \mathrm{~kg}$ of steam and the heat from cooling $x \mathrm{~kg}$ of water to the final temperature of calorimeter with water.

$$
x \cdot L+x \cdot c \cdot\left(T_{3}-T_{2}\right)=\left(m+m_{c}\right) \cdot c \cdot\left(T_{2}-T_{1}\right)
$$

where $L=540 \frac{c a l}{g}$ - latent heat of steam, $c=1 \frac{c a l}{g \cdot \text { degree }}$ - specific heat of water, $T_{1}=288 \mathrm{k}-$ initial temperature of calorimeter with water, $T_{2}=288 \mathrm{k}+6.5 \mathrm{~K}=294.5 \mathrm{~K}-$ final temperature of calorimeter with water, $m=1.1 \mathrm{~kg}$ - mass of water, m_{c} - mass of calorimeter, $T_{3}=373 \mathrm{k}$ temperature of steam.

The mass of steam condensed

$$
\begin{gathered}
x=\frac{\left(m+m_{c}\right) \cdot c \cdot\left(T_{2}-T_{1}\right)}{L+c \cdot\left(T_{3}-T_{2}\right)} \\
x=\frac{\left(1.1 \cdot 10^{3} \mathrm{~g}+20 \mathrm{~g}\right) \cdot 1 \frac{\mathrm{cal}}{\mathrm{~g} \cdot \text { degree }} \cdot 6.5 \text { degree }}{540 \frac{\mathrm{cal}}{\mathrm{~g}}+1 \frac{c a l}{g \cdot \text { degree }} \cdot(373 \mathrm{k}-294.5 \mathrm{~K})}=12 \mathrm{~g}=0.12 \mathrm{~kg} .
\end{gathered}
$$

Answer: 0.12 kg .

