Answer on Question\#36969 - Physics - Mechanics

A surface tension of water $\sigma=70 * 10^{-3} \frac{\mathrm{~N}}{\mathrm{~m}}$.
Pressure inside a bubble when it is at depth h below an water surface is

$$
P=\rho_{w} g h+\frac{2 \sigma}{R}
$$

where ρ_{w} - density of water.
The pressure inside an air bubble of radius 2 cm formed 20 cm below water surface is

$$
P=10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} * 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} * 20 * 10^{-2} \mathrm{~m}+\frac{2 * 70 * 10^{-3} \frac{\mathrm{~N}}{\mathrm{~m}}}{2 * 10^{-2} \mathrm{~m}}=1969 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
$$

Answer: $1969 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$.

