TO what height does a liquid of density 0.4 into 10 raise to power $3 \mathrm{~kg} \mathrm{~m} /$ cube and surface tension $0.05 \mathrm{~N} / \mathrm{m}$ rise in a capillary tube of radius 0.2 mm when dipped in (given $\cos \gamma=0.4$, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}$ square)

Solution

The capillary force is in equilibrium with the gravitational force:

$$
2 \pi r \sigma \cos \gamma=\pi r^{2} h g \rho
$$

where r - radius of tube, σ - surface tension, γ - contact angle, h - height of liquid, g acceleration of gravity, ρ - density of liquid.

The height of liquid

$$
h=\frac{2 \sigma \cos \gamma}{g \rho r}=\frac{2 * 0.05 \frac{\mathrm{~N}}{\mathrm{~m}} * 0.4}{10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} * 0.4 * 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} * 0.2 * 10^{-3} \mathrm{~m}}=0.05 \mathrm{~m}
$$

Answer: 0.05 m.

