Question 36966

One might use Jurin's law in order to solve the problem. According to this law, liquid's height within a thin capillary tube is $h=\frac{2 \gamma \cos \theta}{r \rho g}$, where γ is the liquid surface tension, θ is the contact angle of the liquid on the tube wall, r is the tube radius and ρ is the liquid density.

Replacing $r \rightarrow 2 r$, obtain $\quad h^{\prime}=\frac{2 \gamma \cos \theta}{2 r \rho g}=\frac{\gamma \cos \theta}{r \rho g}=\frac{h}{2}$, hence for capillary of double radius, the water rises to the half of the height in the previous case.

