The amount of work done in blowing up a soaps bubble of radius 2 cm is (given surface tension of soap solution $=4$ into 10 raise to power minus $2 \mathrm{~N} / \mathrm{m}$)

The work done in blowing up a soaps bubble equals surface energy of bubble:

$$
A=E_{S}=\gamma_{s} S
$$

where γ_{s} - surface tension, $S=4 \pi r^{2}$ - area of the bubble, r - radius of the bubble

Therefore:

$$
A=4 \pi r^{2} \gamma_{s}=4 * 3.14 *(0.02 \mathrm{~m})^{2} * 4 * 10^{-2} \frac{N}{m}=2 * 10^{-4} \mathrm{~J}
$$

Answer: 2 * $10^{-4} \mathrm{~J}$

