Answer on Question \#36963, Physics, mechanics.

Water flows at a speed $5 \mathrm{~cm} / \mathrm{s}$ through a pipe of radius 2 cm .the viscosity of water is 0.001 Pl . The Reynolds number and the nature of flows are respectively \qquad .?

Solution

For flow in a pipe, the Reynolds number is defined as

$$
R e=\frac{\rho v D_{H}}{\mu}
$$

where $\rho=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ - density of water, $\mu=0.001 \mathrm{~Pa} \cdot \mathrm{~s}$ - dynamic viscosity of the water, $v=$ $5 \frac{\mathrm{~cm}}{\mathrm{~s}}=0.05 \frac{\mathrm{~m}}{\mathrm{~s}}$ - a speed of flow, D_{H} - the hydraulic diameter of the pipe (for a circular pipe, the hydraulic diameter is exactly equal to the inside pipe diameter $D_{H}=D=2 R$).

The Reynolds number is

$$
R e=\frac{1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 0.05 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 2 \cdot 0.02 \mathrm{~m}}{0.001 \mathrm{~Pa} \cdot \mathrm{~s}}=2000
$$

The Reynolds number $R e=2000$. Its transition region or critical region - flow can either be laminar of turbulent - difficult to pin down exactly.
Answer: 2000; flow can either be laminar of turbulent.

