Answer on Question\# 36960 - Physics - Mechanics

Eight raindrops each of radius R fall through air terminal velocity $6 \mathrm{~cm} / \mathrm{s}$. what is the terminal velocity of the bigger drop formed by coalescing these drops together?

Solution

Let r be the radius of the bigger drop formed. The volume of the big drop is equal to the total volume of the 8 small drops, that is,

$$
\frac{4}{3} \pi r^{3}=8 \cdot \frac{4}{3} \pi R^{3} \rightarrow r=2 R
$$

By the Stoke's law, the terminal velocity of the drop of radius R is

$$
v_{R}=\frac{2 R^{2}\left(\rho-\rho_{0}\right) g}{9 \eta}
$$

The terminal velocity of the drop of radius $r=2 R$ is

$$
v_{r}=\frac{2(2 R)^{2}\left(\rho-\rho_{0}\right) g}{9 \eta}=4 \cdot \frac{2 R^{2}\left(\rho-\rho_{0}\right) g}{9 \eta}=4 * v_{R}=4 * 6 \frac{\mathrm{~cm}}{\mathrm{~s}}=24 \frac{\mathrm{~cm}}{\mathrm{~s}}
$$

Answer: $24 \frac{\mathrm{~cm}}{\mathrm{~s}}$.

