QUESTION:

The terminal velocity of sphere of radius R, falling in a viscous fluid, is proportional to

SOLUTION:

According to the Stokes' law of viscosity the frictional force exerted on spherical objects in a viscous fluid is given by
$\mathrm{F}_{\mathrm{fr}}=6 \pi \mu \mathrm{Rv}$
Here μ is the fluid viscosity, v is the particle's velocity and R is the particle's radius
There are three forces acting on a sphere falling in a fluid:

1. F_{fr} (acting upward)
2. the gravity force mg (acting downward)
3. buoyancy force $\mathrm{F}_{\mathrm{b}}=\rho_{\text {fluid }} \cdot \mathrm{g} \cdot \mathrm{V}$ (acting upward)

According to the Newton's second law of motion and taking in account that the velocity of the particle remains constant (terminal velocity), we can write:
$\mathrm{F}_{\mathrm{fr}}+\mathrm{F}_{\mathrm{b}}-\mathrm{mg}=0$
$\mathrm{m}=\rho_{\text {particle }} \cdot \mathrm{V}$
$\mathrm{V}=\frac{4}{3} \pi \mathrm{R}^{3}$
$6 \pi \mu \mathrm{Rv}+\rho_{\text {fluid }} \cdot \mathrm{g} \cdot \frac{4}{3} \pi \mathrm{R}^{3}-\rho_{\text {particle }} \cdot \mathrm{g} \cdot \frac{4}{3} \pi \mathrm{R}^{3}=0$
$v=\frac{\frac{4}{3} R^{2} g\left(\rho_{\text {particle }}-\rho_{\text {fluid }}\right)}{6 \mu}=\frac{2}{9} R^{2} \frac{\rho_{\text {particle }}-\rho_{\text {fluid }}}{\mu}$
Hence the terminal viscosity is proportional to the particle's radius squared.

Answer

The terminal viscosity is proportional to the particle's radius squared.

