Question: a block of density D floats in a liquid with its one third volumes immersed. What is the density of the liquid?

Solution: the block floats in a liquid, so it means that this block is in equilibrium state: the sum of all forces acting on it is zero. There are two forces acting on this block: downward gravitational force $F_{g}=m g$ and upward buoyant force. The buoyant force we find from equation

$$
F_{b}=\rho g V
$$

Here ρ is the density of a liquid and $V-$ volume of immersed part of the body. Since $F_{g}=F_{b}$, we become:

$$
\begin{gathered}
\rho g V_{\text {immersed }}=m g \\
\rho g \frac{V}{3}=D V g
\end{gathered}
$$

Because the mass of the body is $m=D \cdot V$. From last equation we obtain density of the liquid:

$$
\rho=3 D
$$

Answer: $\rho=3 D$.

