The pressure at a point in water is $10 \mathrm{~N} / \mathrm{m}$ square .the depth below this point where the pressure becomes double is (given density of water $=10$ raise to power three kg / m cube; $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}$ square)

Solution:
Let
$P_{1}=10 \mathrm{~N} / \mathrm{m}^{2}$???
$\rho=10^{3} \mathrm{Kg} / \mathrm{m}^{3}$
$g=10 \mathrm{~m} / \mathrm{s}^{2}$
$P_{2}=2 P_{1}$
$h=$?

The pressure of water at the given point defined as
$P_{1}=\rho g H$
Were H is the water column height over the point
According to this
$P_{2}=\rho g(H+h)$
$P_{2}=2 P_{1}$
$\rho g(H+h)=2 P_{1}$
$\boldsymbol{H}+\boldsymbol{h}=\frac{2 P_{1}}{\rho g}$
$h=\frac{2 P_{1}}{\rho g}-H$
$h=\frac{2 P_{1}}{\rho g}-\frac{P_{1}}{\rho g}$
$h=\frac{P_{1}}{\rho g}$
$h=\frac{10}{1000 * 10}=0.001 \mathrm{~m}$

Answer: 0.001 m.

The current numerical result is quite strange. It is possible that the pressure at a point is $10 \mathrm{~N} / \mathrm{cm}^{2}$. In this case:
$P_{1}=10 \mathrm{~N} / \mathrm{cm}^{2}=1 * 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
$h=\frac{1 * 10^{5}}{1000 * 10}=10 \mathrm{~m}$
Answer: 10 m .

